18 research outputs found

    Nuclear gene indicates coat-color polymorphism in mammoths

    Get PDF
    By amplifying the melanocortin type 1 receptor from the woolly mammoth, we can report the complete nucleotide sequence of a nuclear-encoded gene from an extinct species. We found two alleles and show that one allele produces a functional protein whereas the other one encodes a protein with strongly reduced activity. This finding suggests that mammoths may have been polymorphic in coat color, with both dark- and light-haired individuals co-occurring

    Investigating the seafloor below the Ekström Ice Shelf: the Sub-EIS-Obs project at East Antarctica’s continental margin

    Get PDF
    Knowledge of sub-ice shelf sedimentary sequences, ice-ocean interactions, and biological activities is still relatively sparse, largely due to the challenges involved in accessing ice shelf cavities. The Sub-EIS-Obs project, funded by the Alfred-Wegener-Institute (AWI) and the Federal Institute for Geosciences and Natural Resources (BGR) in Germany, is a multidisciplinary study, which aims to recover and characterize sediment sequences beneath the Ekström Ice Shelf (EIS) in East Antarctica. The project addresses several research objectives, such as the crustal evolution during the breakup of Gondwana, the build-up and variability of the East Antarctic Ice Sheet (EAIS) throughout the Cenozoic, reconstruction of grounding-line dynamics, sedimentary and erosional processes beneath the ice stream and shelf, and multidisciplinary observations of climate induced changes in ice-ocean interactions. A pre-site seismic survey campaign was carried out on the Ekström Ice Shelf in 2016/2017 and 2017/2018, resulting in 615 km of multi-fold seismic data. Based on these data, four different units were defined, which, according to preliminary interpretation, document geologic history of the breakup of Gondwana in the Jurassic (Explora-Wedge volcanic deposits) and ongoing marine and glacio-marine sedimentation during the Meso- and Cenozoic. On top of all strata a glacio-marine surface cover deposited during the Last Glacial Maximum and Holocene sedimentation is indicated in the seismic profiles. In order to sample all units separately, coring locations were selected accordingly. A hot water drilling system was used to drill holes through the shelf ice (ice thicknessesrange between∼210 and 330 m), enabling the deployment of a gravity corer, a Wippermann Grabber, a vibro-and a hammer coring system manufactured by Jilin University (Changchun, China), and a UWITEC percussioncorer (BAS corer). Moreover, a camera installed in a pressure housing enabled recording of high-resolution videofootage of the seafloor and associated benthic ecosystems as well as the base of the ice shelf. In addition, a Conductivity-Temperature-Depth probe was attached to all coring devices in order to record the oceanographic properties of the water column. Here, we present first results from the Sub-EIS-Obs sediment sampling campaigns 2017/2018 and 2018/2019. We present an overview of the long-term project aims, sampling strategy, perfor-mance of the hot water drilling operation, and recovered geological samples, and the video footages of the seafloor

    Structural and Functional Evolution of the Trace Amine-Associated Receptors TAAR3, TAAR4 and TAAR5 in Primates

    Get PDF
    The family of trace amine-associated receptors (TAAR) comprises 9 mammalian TAAR subtypes, with intact gene and pseudogene numbers differing considerably even between closely related species. To date the best characterized subtype is TAAR1, which activates the Gs protein/adenylyl cyclase pathway upon stimulation by trace amines and psychoactive substances like MDMA or LSD. Recently, chemosensory function involving recognition of volatile amines was proposed for murine TAAR3, TAAR4 and TAAR5. Humans can smell volatile amines despite carrying open reading frame (ORF) disruptions in TAAR3 and TAAR4. Therefore, we set out to study the functional and structural evolution of these genes with a special focus on primates. Functional analyses showed that ligands activating the murine TAAR3, TAAR4 and TAAR5 do not activate intact primate and mammalian orthologs, although they evolve under purifying selection and hence must be functional. We also find little evidence for positive selection that could explain the functional differences between mouse and other mammals. Our findings rather suggest that the previously identified volatile amine TAAR3–5 agonists reflect the high agonist promiscuity of TAAR, and that the ligands driving purifying selection of these TAAR in mouse and other mammals still await discovery. More generally, our study points out how analyses in an evolutionary context can help to interpret functional data generated in single species

    Involvement of the V2 Vasopressin Receptor in Adaptation to Limited Water Supply

    Get PDF
    Mammals adapted to a great variety of habitats with different accessibility to water. In addition to changes in kidney morphology, e.g. the length of the loops of Henle, several hormone systems are involved in adaptation to limited water supply, among them the renal-neurohypophysial vasopressin/vasopressin receptor system. Comparison of over 80 mammalian V2 vasopressin receptor (V2R) orthologs revealed high structural and functional conservation of this key component involved in renal water reabsorption. Although many mammalian species have unlimited access to water there is no evidence for complete loss of V2R function indicating an essential role of V2R activity for survival even of those species. In contrast, several marsupial V2R orthologs show a significant increase in basal receptor activity. An increased vasopressin-independent V2R activity can be interpreted as a shift in the set point of the renal-neurohypophysial hormone circuit to realize sufficient water reabsorption already at low hormone levels. As found in other desert mammals arid-adapted marsupials show high urine osmolalities. The gain of basal V2R function in several marsupials may contribute to the increased urine concentration abilities and, therefore, provide an advantage to maintain water and electrolyte homeostasis under limited water supply conditions

    Structural and functional evolution of the P2Y12-like receptor group

    Get PDF
    Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members

    The rise and fall of the chemoattractant receptor GPR33

    No full text
    Chemokine and chemoattractant receptors are members of the large superfamily of G protein- coupled receptors ( GPCR), which control leukocyte chemotaxis. In addition to their physiological role, several chemokine and chemoattractant receptors, such as CCR5 and Duffy, have been directly associated with pathogen entry. GPR33 is an orphan chemoattractant GPCR that was previously identified as a pseudogene in humans. GPR33 evolved in mammals about 125 - 190 million years ago. The cloning and analysis of more than 120 mammalian GPR33 orthologs from 16 of 18 eutherian orders revealed an inactivation of this chemoattractant GPCR not only in humans, but also in several great ape and rodent species. Intriguingly, in all ape and some rodent species where the inactivation occurred, samples harbored both pseudogene and intact gene variants. The analysis of over 1200 human individuals representing all major linguistic groups revealed that the intact allele of GPR33 is still present in the human population. Estimates of the age of the human alleles suggest inactivation in the past 1 million years. Similarly, analysis of more than 120 wild- caught gray rats ( Rattus norvegicus), revealed that inactivation of gpr33 is worldwide fixed and occurred in less than 0.7 million years ago. The coincidental inactivation and its fixation in several species of distantly related mammalian orders suggest a selective pressure on this chemoattractant receptor gene. [References: 43

    Molecular and functional basis of phenotypic convergence in white lizards at White Sands

    No full text
    There are many striking examples of phenotypic convergence in nature, in some cases associated with changes in the same genes. But even mutations in the same gene may have different biochemical properties and thus different evolutionary consequences. Here we dissect the molecular mechanism of convergent evolution in three lizard species with blanched coloration on the gypsum dunes of White Sands, New Mexico. These White Sands forms have rapidly evolved cryptic coloration in the last few thousand years, presumably to avoid predation. We use cell-based assays to demonstrate that independent mutations in the same gene underlie the convergent blanched phenotypes in two of the three species. Although the same gene contributes to light phenotypes in these White Sands populations, the specific molecular mechanisms leading to reduced melanin production are different. In one case, mutations affect receptor signaling and in the other, the ability of the receptor to integrate into the melanocyte membrane. These functional differences have important ramifications at the organismal level. Derived alleles in the two species show opposite dominance patterns, which in turn affect their visibility to selection and the spatial distribution of alleles across habitats. Our results demonstrate that even when the same gene is responsible for phenotypic convergence, differences in molecular mechanism can have dramatic consequences on trait expression and ultimately the adaptive trajectory
    corecore